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Equilibration through local information exchange in networks
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We study the equilibrium states of energy functions involving a large set of real variables, defined on the
links of sparsely connected networks, and interacting at the network nodes, using the cavity and replica
methods. When applied to the representative problem of network resource allocation, an efficient distributed
algorithm is devised, with simulations showing full agreement with theory. Scaling properties with the network

connectivity and the resource availability are found.
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Many theoretically challenging and practically important
problems involve interacting variables connected by network
structures [1]. Statistical mechanics of disordered systems
makes contributions towards the understanding of such sys-
tems at two levels. Macroscopically, it describes the typical
behavior of the networks, using techniques such as the rep-
lica method. Microscopically, it analyzes the relation be-
tween variables, using techniques such as the cavity method,
that give rise to efficient computational algorithms. In com-
puter science, probabilistic inference based on graphical
structures has been developed and applied [2,3], mainly for
providing approximate solutions to specific instances of lim-
ited size. Examples of recent success included the belief
propagation algorithm for error-correcting codes [4] and the
survey propagation algorithm for the satisfiability problem
[5].

Most analyses so far have focused on networks of discrete
variables. However, many typical problems, such as network
resource allocation, involve continuous variables. Compared
with discrete variables, analyses for continuous variables
were much less explored. The main obstacle comes from the
need to pass among the nodes entire free energy functions as
messages. This is much more complex than cases of discrete
values, where the messages are countable sets of conditional
probability estimates of discrete values. Previous work in the
computer science literature focused on modeling these func-
tions for getting good approximations in feasible time scales
[6]. There have been attempts to simplify the messages for
continuous variables, for example, to parametrize them using
eigenfunction decomposition for special cases, but the gen-
eral feasibility remains an open question [7].

In this Rapid Communication we study a system of real
variables that can be mapped onto a sparse graph. Based on
the analysis, we demonstrate the close relationship between
belief propagation algorithms and the Bethe approximation
in statistical physics [8], and propose a message-passing ap-
proximation method, generally applicable to problems of
continuous variables. The method is efficient since the mes-
sages consist of only the first and second derivatives of the
vertex free energies derived from our analysis. The key to the
successful simplification, not needed for the simpler case of
discrete variables, is that the messages passed to a target
node are accompanied by information-provision messages
from the target node, to first determine the state at which the
derivatives should be calculated.
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We first formulate the problem at a general temperature,
and then focus on a prototype for optimization. The tradi-
tional approach for optimization on networks is to adopt
computationally demanding global optimization techniques,
such as linear or quadratic programming [9]. In contrast,
message-passing approaches have the potential to solve glo-
bal optimization problems via local updates, thereby reduc-
ing the computational complexity. An even more important
advantage, relevant to practical implementation, is its dis-
tributive nature. Since it does not require a global optimizer,
it is particularly suitable for distributive control in large or
evolving networks.

We consider a sparse network with N nodes, labeled
i=1,...,N. Each node i is randomly connected to c
other nodes. The connectivity matrix is given by A;;=1,0
for connected and unconnected node pairs respectively.
A link variable y; is defined on each connected link
from j to i. We consider an energy function (cost) E
=3 ) Ay d(yi) +Zp(N;, {y;;| A;;=1}), where \; is a quenched
variable defined on node i. In the context of probabilistic
inference, y;; may represent the coupling between observ-
ables in nodes j and i, ¢(y;) may correspond to the loga-
rithm of the prior distribution of y;;, and (\;.{y;|A;=1})
the logarithm of the likelihood of the observables \;. In the
context of resource allocation, y;;=-y; may represent the
current from node j to i, ¢(y;;) the transportation cost, and
$(\;.{y;;] A;=1}) the performance cost of the allocation task
on node i, dependent on the node capacity \;.

We are interested in the case of intensive connectivity
¢~ O(1)<N. Since the probability of finding a loop of finite
length on the network is low, the cavity method well de-
scribes the local environment of a node. A node is connected
to ¢ branches in a tree structure, and the correlations among
the branches of the tree are neglected. In each branch, nodes
are arranged in generations. A node is connected to an an-
cestor node of the previous generation, and other ¢—1 de-
scendent nodes of the next generation. Considering node i as
the ancestor of node j, the descendents of node j form a tree
structure T with c¢—1 branches, labeled by k#i for Ajk: 1.
At a temperature 7= "', the free energy F(y;|T) can be
expressed in terms of the free energies F (yjk|Tk) of its de-
scendents. The free energy can be considered as the sum of
two parts, F(y|T)=NyF,,+F(y|T), where Ny is the number
of nodes in the tree T, F,, is the average free energy per
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node, and Fy(y|T) is referred to as the vertex free energy.
This leads to the recursion relation
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where T, is the tree terminated at node k, and (- --), repre-
sents the average over the distribution of \. Interestingly, the
recursive relation of Eq. (1) can be directly linked to proba-
bilistic message passing (belief propagation), where the loga-
rithms of messages passed between nodes are proportional to
the vertex free energies.

For more concrete discussions, we focus on a prototype
for optimization, termed resource allocation and well known
in the areas of computer science and operations management
[10,11]. The analysis of the problem is applicable to typical
situations where a large number of nodes are required to
balance loads and/or resources, such as reducing internet
traffic congestion and streamlining network flows of com-
modities [12]. In computer science, many practical solutions
are usually heuristic and focus on practical aspects (e.g.,
communication protocols). Here we study a more generic
version of the problem represented by nodes of some com-
putational power that should carry out tasks. Both computa-
tional powers and tasks will be chosen at random from some
arbitrary distribution. The nodes are located on a randomly
chosen sparse network of some connectivity. The goal is to
allocate tasks on the network such that demands will be sat-
isfied while the migration of (sub-)tasks is minimized.

We focus here on the satisfiable case where the total com-
puting power is greater than the demand, and where the num-
ber of nodes involved is very large; the unsatisfiable case can
be investigated using a similar approach [13]. Each node on
the network has a capacity (computational capability minus
allocated tasks) \; randomly drawn from a distribution p(}\,).
With the aim to satisfy the capacity constraints, we have
l,[/()\i,{yij|A,»j=1})=1n[®(—2j.,4ijy,-j—)\,-)+6], where €—0.
The problem reduces to the load balancing task of minimiz-
ing the energy function (cost) E=Z;;.A;;¢(y;;), subject to the
capacity constraints =;A;y;+\;=0.

When ¢(y) is a general even function of the current y, we
may also derive Eq. (1) using the replica method. We first
introduce the chemical potentials w; of nodes i, and approxi-
mate the current y;; as driven by the potential differences
between nodes y;=u;— w;. Since sparse networks are locally
treelike, the probability of finding short loops is vanishing in
large networks, and the approximation works well.
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Considering the optimization problem in the space of
chemical potentials, we calculate the replicated partition
function (Z") 4, averaged over the connectivity matrix and
capacity distribution, and take the limit n — 0. Assuming rep-
lica symmetry, the saddle point equations yield a recursion
relation for a two-component function R dependent on the
tree structure T, given by

1 c—1
R(z,u|T) = EH (f deR(M»Mk|Tk))

k=1

c—1
><®(2 My —Cp+Z+ Kv(r))

k=1
IBE c-1
Xexp(— ?Mz—ﬁg ¢(,U«—,U«k)), (3)

where D is a constant, T represents the tree terminated at
the kth descendent, and Ay, the capacity of the vertex of the
tree T. The term ,Be,uz/ 2, with €—0, is introduced to break
the translational symmetry of the chemical potentials, since
the energy function is invariant under the addition of a con-
stant to all chemical potentials.

Equation (3) expresses R(z,u|T) in terms of ¢—1 func-
tions R(w, uy| Ty) (k=1,...,c—1), a characteristic of the tree
structure. Furthermore, except for the factor exp(—Beu®/2),
R is a function of y= p—z, which is interpreted as the cur-
rent drawn from a node with chemical potential w by its
ancestor with chemical potential z. One can then express the
function R as the product of a vertex partition function Zy
and a normalization factor W, that is, R(z,u|T)
=W(z)Zy(y|T). In the limit e— 0, the dependence on u and
y decouples, enabling one to derive a recursion relation for
the vertex free energy F\(y|T)=-T1n Z,(y|T) and arrive at
Eq. (3).

The current distribution and the average free energy
per link can be derived by integrating the current y’
in a link from one vertex to another, fed by the trees

T, and T,, respectively; the obtained expressions
are  P(y)=(8y-y')). and (E)=(¢(y')). where (),
=([dy" exp[-BE(y")()/ fdy" exp[-BE(y") ]}, and E(y")

=Fy(y' | T)+Fy(=y' | T) + ().

Figure 1(a) shows results of the iteration of Eq. (1), in the
case of optimization (T=0) based on discretizing Fy(y|T) as
a vector. The capacity distribution p(\) is Gaussian of vari-
ance 1 and average (\). Each iteration corresponds to adding
one extra generation (1000 new nodes in our simulations) to
the tree structure, such that the iterative process corresponds
to approximating the network by an increasingly extensive
tree. We observe that after an initial rise with iteration steps,
the average energies converge to steady-state values, at a rate
which increases with the average capacity.

To study the convergence rate of the iterations, we
fit the average energy at iteration step ¢ using (E(r)—E(®))
~exp(—yt) in the asymptotic regime. As shown in the inset
of Fig. 1(a), the relaxation rate 7y increases with the average
capacity. A cusp appears at the average capacity of about
0.45, below which convergence is slow due to a plateau that
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develops in the average energy curve before the final stage.
The slowdown is probably due to the appearance of increas-
ingly large clusters of nodes with negative resources, which
draw currents from increasingly extensive regions of nodes
with excess resources to satisfy the demand.

The local nature of the recursion relation (1) points to the
possibility that the network optimization can be solved by
message-passing approaches. Instead of passing the
functions F(y|T) of the current y as messages, we
simplify each message to two parameters, namely, the first
and second derivatives of the vertex free energies. Let
(A;j.Bj)) E[aFV(yij|Tj)/&y{j’&zFV(yij|Tj)/ayizj] be the mes-
sage passed from node j to i. Using Eq. (1), the recursion

relations lead to the message (A;;,B;;)
@ — M+ €
Aij — =My Bij— ( 'U:,j ) i (4)
> A+ Bj)”

k#i

k#i

Mij = min{ [E Aulyi— (¢;k +Ajk)(¢;‘,k + Bjk)_l] + Ny

x [2 A,k<¢;;+3,k>-1]",o}, s)

k#i

with ¢ and ¢, representing the first and second derivatives
of ¢(y$ at y=yj, respectively.

The algorithm is complete with the determination of the
drawn current y;; at which the derivatives comprising the
messages should be computed. Two methods are proposed.
In the first, when messages are sent from node j to the an-
cestor node i, backward messages y; computed from the
same optimization step are sent from node j to the descen-
dent nodes k, informing them of the particular arguments to
be used for calculating subsequent messages. In the second,
node j first receives the messages (A;;,B;;) and current y;
Jfrom the ancestor node i, and update the current y;; by mini-
mizing the total cost. Both methods work well for the qua-
dratic cost functions.

For comparison, an independent exact optimization is
available at zero temperature. The chemical potentials turn
out to be the Lagrange multipliers of the capacity constraints,
and the relation between the currents and the chemical po-
tentials turns out to be exact. The Kiihn-Tucker conditions
for the optimal solution yield

Mi:min[%@‘, A,,Mjm,.),o]. 6)

Like in the message-passing algorithm, this condition also
provides a local iterative solution to the optimization prob-
lem. Simulations show that it yields excellent agreement
with Egs. (1), (4), and (5).

To study the dependence on the connectivity, we
first consider the limit of large K=c-1, in which
Eq. (4) converges to the steady-state results of A;
=maX[K_1(Ek¢,~Al~kAjk—)\j),0] and B”""K_] Then
2y#AjA ji becomes self-averaging and equal to Km,, where
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FIG. 1. Results for N=1000 and ¢(y)=y?/2. (a) (¢) obtained by
iterating Eq. (1) as a function of ¢ for (\)=0.1, 0.2, 0.4, 0.6, 0.8 (top
to bottom) and ¢=3. Dashed line: The asymptotic (¢) for (A\)=0.1.
Inset: y as a function of (\). (b) K*(¢) as a function of (\) for
c=3(0), 4 (0), 5 (¢), large K (line). Inset: KX(¢) as a function of
time for random sequential update of Egs. (4) and (5). Symbols:
same as (a).

my~K™' is the mean of the messages A;j. Thus,
Vij ™~ i~ K~!. The physical picture of this scaling behavior is
that the current drawn by a node is shared among the K
descendent nodes. After rescaling, quantities such as K*(¢),
P(Ky)/K, and P(Kw)/K become purely dependent on the
average capacity (\).

For increasing finite values of K, Fig. 1(b) shows the com-
mon trend of K*(¢) decreasing with (\) exponentially, and
gradually approaching the large K limit. The scaling property
extends to the optimization dynamics [Fig. 1(b) inset]. As
shown in Fig. 2(a), the current distribution P(Ky)/K consists
of a & function component at y=0 and a continuous compo-
nent, whose breadth decreases with (\). Remarkably, the dis-
tributions for different connectivities collapse almost per-
fectly after the currents are rescaled by K=, with a very mild
dependence on K and gradually approaching the large K
limit. As shown in the inset of Fig. 2(a), the fraction of idle
links increases with (\). The fraction has a weak dependence
on the connectivity, confirming the almost universal distribu-
tions rescaled for different K.

Since the current on a link scales as K~!, the allocated
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P(Ky)/K

(b)

FIG. 2. Results for N=1000 and ¢(y)=y*/2. (a) The current
distribution P(Ky)/K for (A\)=0.02,0.5,1, and ¢=3 (solid lines), 4
(dotted), 5 (dot-dashed), large K (long dashed). Inset: P(y=0) as a
function of (\) for c=3 (O), 4 (O), 5 (©), large K (line). (b) The
resource distribution P(r) for (A\)=0.02,0.1,0.5, large K. Symbols:
as in (a). Inset: P(r>0) as a function of (\). Symbols: as in the
inset of (a).

resource of a node should have a weak dependence
on the connectivity. Defining the resource at node i by
r;=N+2;A;;y;, the resource distribution P(r) shown in Fig.
2(b) confirms this behavior even at low connectivities. The
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fraction of nodes with unsaturated capacity constraints in-
creases with the average capacity, and is weakly dependent
on the connectivity [Fig. 2(b) inset]. Hence the saturated
nodes form a percolating cluster at a low average capacity,
and breaks into isolated clusters at a high average capacity. It
is interesting to note that at the average capacity of 0.45,
below which a plateau starts to develop in the relaxation rate
of the recursion relation, Eq. (1), the fraction of saturated
nodes is about 0.47, close to the percolation threshold of 0.5
for c=3.

In summary, using the example of the resource allocation
problem on sparsely connected networks, we studied the use
of message-passing methods for equilibration using both rep-
lica and cavity based analyses. A local algorithm was devised
and successfully applied to this task. The study also reveals
the scaling properties of this model, showing that the re-
source distribution on the nodes depends principally on the
networkwide availability of resources, and depends only
weakly on the connectivity. Links share the task of resource
provision, leading to current distributions that are almost
universally dependent on the resource availability after
rescaling.

While the analysis focused on fixed connectivity and zero
temperature, it can accommodate any connectivity profile
and temperature parameter and may be used for analyzing a
range of inference problems. For instance, we have consid-
ered the effects of adding anharmonic and frictional terms to
the quadratic cost function. The message-passing function
can be adapted to these variations, and the results will be
presented elsewhere [13]. Both analysis and algorithm ex-
tend the use of current message-passing techniques to infer-
ence in problems with continuous variables, opening up a
rich area for further investigations with many potential ap-
plications.
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